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bstract

n the present study, the tap relative density of five inorganic powders is modelled using neural networks. These powders are similar in shape but
ave different true density. A large number of mixings are prepared from three classes (coarse, medium, and fine particles) and modelled. The

nputs of the neural networks are the 23 weight percentage intervals of the grain size distribution (38–2000 �m). The estimated values are compared
o those obtained by factorial plans. It is shown that very accurate results are obtained with a unique relatively small neural network. Finally, the
eural network is used to determine the mixing leading to the highest tap relative density.

2009 Elsevier Ltd. All rights reserved.
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. Introduction

Packing of granular matters has long interested specialists
f powder technologies and applications.1,2 When dealing with
norganic matter, the studies mainly focus on the behaviour of
he powder during packing. The goal is then to obtain the highest
ompactness, to reach the highest density. Since the early 1930s a
ot of models have been developed to propose the best granular
istribution achieving this goal.3–7 Along with these models,
esearchers have studied the way powders behave during the
uccessive stages of the compaction process.8–11 In fact, for a
pecified granular distribution, the final density strongly depends

n the way the particles interact and/or are spatially distributed.
ence, there is no unique value for the density, even for tapped
owders.
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Nevertheless, it is possible to define an ideal granular distribu-
ion, linked to an ideal spatial distribution, leading to the highest
ensity after compaction. This can briefly be described as fol-
ows: the voids existing between large particles are occupied by
maller particles; and the voids between these smaller particles
re occupied by even more smaller particles; and so on until
ll space is occupied. This is an ideal situation, and is the basis
f a lot of models. Furnas1,6 founded his model on discrete size
istribution, and Andreasen5 used a continuous particle size dis-
ribution. The latter has proposed to use the following equation
o compute the granular distribution:

CPFT

100
=

(
D

DL

)n

here CFPT stands for Cumulative Percent Finer Than, D is the
article size, DL is the largest particle size, n is the distribution
odulus
Andreasen states, that to obtain the highest tap density, “n”

hould be included in the [0.33, 0.50] interval.
As there is always a smallest particle size DS, Dinger and

unk8 have introduced this parameter in the Andreasen model:

n n
CPFT

100
= D − DS

Dn
L − Dn

S

nd state that the distribution modulus n should be 0.37 to
chieve best packing.
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Table 1
Tap specific gravities.

Powder #1 Powder #2 Powder #3 Powder #4 Powder #5
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Table 3
d10, d50 and d90 equivalent diameters.

d10 (�m) d50 (�m) d90 (�m)

1 127 688 1279
2 148 567 1003
3 372 760 1321
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.6683 0.6154 0.5936 0.5604 0.5797

It has been found that these models do not lead to the max-
mum experimental values. The morphology of the particles is

ainly invoked, e.g. Ref. [10]. Then, authors try to model the
pparent density using new characteristics such as the mean par-
icle size, the width of the size distribution, the true density, the
hape and shape factor.12–15 More recently, new tools have been
sed such as factorial design16 and neural networks.17,18 In Ref.
16], it is experimentally shown that, starting from three classes
f powder (coarse, medium, and fine), the highest apparent den-
ity is obtained using a mix of about 50% of coarse particles and
bout 50% of fine particles.

Artificial neural networks (ANN) are more and more used
n various fields of powder technologies (e.g. Refs. [19–24]
o name a few). In Ref. [17], the author studies the possibil-
ty to model the density of two powders after compaction and
intering, but does not conclude positively for both; only one
eing correctly modelled. In Ref. [18], the authors obtained good
esults but studied a mix of three classes having a very narrow
ize distribution.

In the present study, the tap density of five inorganic powders
s modelled using neural networks; for confidentiality reasons,
he powders will be named Powder #1 to Powder #5. Due to
he fact that the true densities of the powders are not equal, the
ap relative density is modelled. The latter is defined as the ratio
f the tap density to the true density. Hence, a perfectly tapped
owder would get a value of unity for its tap relative density.
he first part is dedicated to the presentation of the preparation
nd to the characterization of the powders. The following part
eals with the use of ANN. It presents the results, including a
omparison with the results coming from the use of the factorial
esign, and the application to mixing optimization.

. Methods and materials

As already mentioned, the experimental densities (apparent
ensities) are lower than the optimal density. They strongly
epend on the way the powders are prepared and then tapped.
o, this section is dedicated to the presentation of the method
sed in this study.
In a first step, the powders are obtained by grinding. So,
hey all have a similar morphology (angular). They are all quite
ight, having quite close tap relative density, but having different
article size distribution.

2

d

able 2
he 23 intervals of the particle size distribution.

m 38–45 45–53 53–63 63

25–150 150–180 180–212 212–250 2
00–600 600–710 710–850 850–1000 10
321 671 1106
302 647 1057

.1. Characterization techniques

.1.1. The tap density
To be able to accurately compare results between laborato-

ies and powders, standard procedures have been defined such
s USP and ASTM methods. In the present study, the ASTM
tandard B527 has been used.

To be able to compute the tap relative density, the true den-
ity is needed. The latter is measured using helium pycnometry
Ultrapycnometer 1000, Quantachrome). Table 1 gives the tap
elative density for the five powders.

.1.2. The grain size distribution
The grain size distribution of powders is measured by means

f laser diffraction. The mathematical model is the Fraunhofer
odel. In this model, the particles are assimilated to spheres that

re completely opaque. In the present study a MasterSizer 2000®

Malvern) has been used. The particles have been dispersed in an
ir flow using a 0.5 bar pressure (dry test). With this equipment,
t is possible to choose the number of the distribution intervals
rom 2 up to 100. For this study, to get the highest possible
ccuracy without increasing too much the number of data, it has
een chosen to use 23 intervals as defined in Table 2.

It is also possible to get the three following equivalent diame-
ers: d10, d50 and d90; where dxx is defined as the diameter where
he particles occupying xx vol.% of the powder have a smaller
quivalent diameter. Table 3 gives the value for the five powders.
ig. 1 shows the particle size distributions.

.1.3. SEM observation
A Hitachi S-3500N scanning electron microscope (SEM) has

een used to observe the powders. The acceleration voltage has
een fixed to 20 kV; the samples have been disposed on a graphite
aper and then covered by a thin layer of gold. Fig. 2 shows
ypical examples of particles for the three grain size classes.
.2. Powder classification

To split the powders in three, a mechanical sieving has been
one (in the dry phase). This has been carried out according to the

–75 75–90 90–106 106–125

50–300 300–355 355–425 425–500
00–1180 1180–1400 1400–1700 1700–2000
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Fig. 1. Particle size distribution for all powders used in this study.

STM E11 standard during 15 min. The first size range, here-
fter referred to as “coarse particles”, is the [1000 �m, 2000 �m]
nterval. The second size range, hereafter referred to as “medium

articles”, is the [250 �m, 1000 �m] interval. The last size range,
ereafter referred to as “fine particles”, is the [38 �m, 250 �m].
hen, apart from the raw powder, 17 mixing have been prepared,
s described in Table 4.

p
d
v
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Fig. 2. Examples of SE

able 4
ixing definitions.

ixing # Used for test
(Powder #)

Coarse particles
(wt%)

Medium particles
(wt%)

Fine partic
(wt%)

1 50 0 50
2 3 0 0 100
3 0 100 0
4 100 0 0
5 3 16.67 16.67 66.67
6 2 50 50 0
7 16.67 66.67 16.67
8 0 50 50
9 66.67 16.67 16.67
0 1 and 2 33.33 33.33 33.33
1 32 21 47
2 5 26 20 54
3 83 9 8
4 5 72 0 28
5 4 26 0 74
6 1 0 78 22
7 25 75 0
8 4 raw powder
eramic Society 29 (2009) 3105–3111 3107

Each mixing sample, weighing 100 g, is homogenized in a
urbula®14 type blender–mixer for 3 min. SEM observations
nd laser diffraction measurements show no modification of the
articles in terms of particle size distribution and particle shape.
t can be concluded that the blending/mixing process do not alter
he characteristics of the powders.

. Artificial neural networks (ANN)

.1. Principles

It is now well known that ANN can be used to rep-
esent non-linear systems. For example, they are used in
hermal engineering,25–27 chemical engineering,28–30 and in
ystem identification31–33; see Ref. [34] for an introduction
o ANN.

In this study, ANN are used to model the tap relative density,
aking the 23 intervals of the weight% distribution as inputs (see
able 2). In fact, as usually done, the inputs and the outputs are

re-/post-processed to get a 0 mean value and a unity standard
eviation during the neural process. This locates the computed
alues in the most sensitive part of all transfer functions (linear
nd non-linear).

M observations.

les Tap relative density

Powder #1 Powder #2 Powder #3 Powder #4 Powder #5

0.75 0.64 0.66 0.64 0.67
0.60 0.53 0.59 0.53 0.59
0.61 0.55 0.55 0.52 0.56
0.57 0.55 0.54 0.52 0.56
0.70 0.58 0.63 0.58 0.63
0.61 0.56 0.56 0.55 0.57
0.67 0.58 0.59 0.56 0.59
0.72 0.60 0.61 0.58 0.63
0.68 0.56 0.61 0.58 0.61
0.73 0.62 0.61 0.60 0.65
0.74 0.64 0.66 0.62 0.67
0.73 0.60 0.63 0.60 0.65
0.62 0.58 0.58 0.56 0.59
0.70 0.62 0.66 0.58 0.63
0.69 0.58 0.63 0.58 0.63
0.69 0.56 0.58 0.56 0.61
0.62 0.56 0.56 0.55 0.57
0.67 0.62 0.59 0.56 0.61



3108 V. Moreschi et al. / Journal of the European C

F
a

i
(
t
t
b
w
n
n
a
F
f
t
I
d
fi
i
e
t

s
t
f
f
s

m
c

T
k
c
o
a
1

a
n
s

I
a
t
c
I
c
e

h
m

3

s

-
-
-

o
e

t
t
c
a
a

T
M

T

1
2
3
4
5

ig. 3. Schematic of a standard feed forward neural network having 23 inputs
nd one output.

Concerning the number of neurons on the hidden layer, it
s important to note that only 90 sets of inputs are available
18 mixing for each of the five powders). Hence, considering
he 23 inputs and the bias for each neuron, three neurons is
he maximum. This corresponds to 23 × 3 connection weights
etween the inputs and the hidden layer, three connection
eights between the biases and the hidden neurons, three con-
ection weights between the hidden neurons and the output
euron, and one connection weight between the output neuron
nd its bias, which makes a total of 76 connection weights (see
ig. 3 for a simplified schematic of a neural network). Adding a
ourth hidden neuron would add 25 connection weights, leading
o a number of parameters higher than the number of equations.
n this case, a perfect fit could be achieved between estimated
ata and actual data included in the training set, but a very poor
t is generally observed for data included in the test set. This fact

s known as over fitting. On the contrary, using too few param-
ters leads to very bad results, either in the training phase, or in
he test phase.

Within the hidden layer the neurons do not necessarily get the
ame transfer function. So, the hidden layer can be divided into
wo or more sublayers, each of them using a specific transfer
unction. It has to be noted that in the case of the linear trans-
er function, a unique neuron is sufficient in the corresponding

ublayer.

The connection weights are determined using a standard opti-
ization procedure known as the training phase. The latter is

arried out using a part of the whole database (training dataset).

o
o

fi

able 5
ost relevant results.

est # Transfer function
of the output
neuron

Number of neurons
on the first hidden
sublayer

Transfer function
used in the first
hidden sublayer

Number
on the se
hidden s

Linear 2 Non-linear 1 1
Linear 2 Non-linear 1 1
Linear 2 Non-linear 2 1
Linear 2 Non-linear 2 1
Linear 2 Non-linear 2 1
eramic Society 29 (2009) 3105–3111

he remaining data are used for testing. In the present study, to
eep a satisfactory number of data for the test phase, it has been
hosen to use 90% of the whole dataset for training; hence 10%
f the database is used for testing. These 10% are chosen so that
ll powders have 10% left for tests; but within a powder, these
0% are randomly extracted; see Table 4.

This optimization has to be repeated for all neural network
rchitectures tested. The latter are defined as sets of number of
eurons and transfer functions. Finally the optimal structure is
elected based on the highest efficiency obtained.

It is possible to use various criteria to measure this efficiency.
t can be the correlation coefficient(s) between actual outputs
nd the estimated outputs using the whole database and/or only
he test dataset; it can be a combination of the correlation coeffi-
ient(s), the mean average error(s), and the standard deviation(s).
t has been chosen here to find a good compromise between the
orrelation coefficient (training dataset), the maximum absolute
rror (test dataset), and the mean error (test dataset).

In the present study, the Neural Network Matlab® toolbox
as been used. Hence further details can be found in the user’s
anual.35

.2. Application

A large number of architectures have been tested. Table 5
hows the most relevant results.

In Table 5:

linear corresponds to: y = x;
non-linear 1 corresponds to: y = 1/(1 + exp(−x));
non-linear 2 corresponds to: y = 2/(1 + exp(−2x)) − 1.

The fully linear architecture leads to a correlation coefficient
f 0.742, a maximum absolute error of 30.953% and a mean
rror of 1.309%.

It can be concluded that the link between the particle size dis-
ribution and the tap relative density is non-linear. It can be seen
hat overtraining occurs for test numbers 1 and 2: the correlation
oefficient are quite high while the maximum absolute error is
lso high. On the other hand, the fifth architecture is not well
dapted as the correlation coefficient is a little bit lower than the

ther values, while the errors are higher than the errors for the
ther tests.

Eventually, test number 3 shows the best compromise. The
nal architecture is represented in a compact way in Fig. 4.

of neurons
cond
ublayer

Transfer function
used in the second
hidden sublayer

Correlation
coefficient

Maximum
absolute
error (%)

Mean error
(%)

Linear 0.976 8.370 0.927
Non-linear 1 0.975 6.109 −0.583
Linear 0.975 4.733 −0.086
Non-linear 2 0.972 6.490 0.327
Non-linear 1 0.973 5.976 −1.284
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Fig. 4. Compact representation o
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Fig. 5. Overview of all the results obtained by the selected architecture.

.3. Results

It can be seen (Fig. 2) that the particles are far from being
pherical but similar in shape, so that an analytical model for
acking would be difficult to determine. It is important to note
hat this is true for all the powders. Thus, the results are not
omparable to those presented in Ref. [36] for perfectly spherical
articles.

By using the selected architecture, it is possible to estimate
he tap relative density for all samples and to compare these
alues to the actual values. Fig. 5 shows an overview of the
esults.

As can be seen, just a very few estimated values are more than
% away from the actual values. The accuracy of the results can
lso be estimated by correlation coefficients that are computed

or each powder. These are compared (Table 6) to the values
btained when using factorial design that are presented in Ref.
16]. In the latter case, a model is obtained for each powder.

able 6
omparison of factorial plans and neural networks accuracy.

orrelation coefficient Factorial plans Neural networks

owder #1 0.94 0.9570
owder #2 0.70 0.9539
owder #3 0.87 0.9762
owder #4 0.73 0.9672
owder #5 0.81 0.9783

t
a

1
d
[
1
t
d
8
t
c
(

f the selected architecture.

model developed for only one sand mix leads to similar cor-
elation coefficients.37

On one hand, it can be concluded that a specialized tool (one
er powder) can be less accurate than a global tool. This is eas-
ly explained by the fact that factorial designs lead to linear
epresentations, and that the optimization phase of the neural
etwork has clearly shown that the relation is non-linear. This
on-linearity leads to complex shapes for the iso-values (Fig. 6)
f the tap density, which is not the case for more standard prod-
cts as shown in Fig. 5 of Ref. [38].

On the other hand, it can be concluded, as there are no large
ifferences between all correlation coefficients, that there is no
exotic” powder. All of them can accurately be modelled using
unique neural network.

.4. Mixing optimization

Once the neural network is chosen, it is possible to use it to
ompute the tap relative density for any weight% distribution,
s long as the latter corresponds to a mixing of the three classes
see Table 4). This can be used to determine the mixing that
eads to the highest tap relative density. This is similar to what is
resented in Ref. [39]. To do so, 66 mixings have been created
nd used to feed the network. The results are given in Fig. 6.

It can be observed that two powders (#1 and #3) have their
aximum located on the lower line (at about the same point),

nd that the three others have their maximum located in the
ower left corner (Fig. 6). This result is surely connected to
he fact that these two powders present the highest values of
eight percentage for the large particles (Fig. 1). Note that

he exact proportions are not given due to confidentiality rea-
ons.

It can also be seen that the mixing leading to the maximum
ap relative density is not just a blend of coarse and fine particles
s found when using the factorial plans.

In four cases, the maximum tap relative density is about
5% higher than the tap relative density of the raw pow-
er; in the last case, the increase is about 6.5%. In Ref.
37], the optimization process leads to an increase of about
3% between the worst combination (among 54 combina-
ions) and the optimal combination. The highest tap relative

ensity obtained is about 0.75. Although it is less than the
5% which can be theoretically achieved,36 it has to be noted
hat the latter case is only possible when considering spheri-
al particles; which is far from the case in the present study
Fig. 2).
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Fig. 6. Prediction of the

. Conclusions

It has been shown that a neural network can accurately model
he tap relative density of powders. An important finding is that
t has been possible to find a unique model for five powders. This
s possible using the full particle size distribution (23 classes),
nd a combination of linear and non-linear transfer functions.
evertheless, it has to be reminded that a random combination
f those 23 classes would have surely led to wrong results, as
he training database just contain a mixing of pre-defined sieved
istributions (coarse, medium, and fine).

Future works will address the study of more powders, surely
eading to a more complex model. In particular, it will be checked
f it is necessary to have similar shapes (as it is the case in the
resent study), to be able to model a large number of powders.

eferences
1. Furnas, C. C., Relations between specific volume, voids and size composi-
tion in systems of broken solids of mixed sizes, U.S Bureau of Mines Report
of Investigation, No. 2894, 1928.

2. Dodds, J. A., The structure of random packings formed by spheres with
a mixture of sizes. In The Physics of Granular Media, ed. D. Bideau

1

1

mal tap relative density.

and J. A. Dodds. Pub. Nova Science, NY, 1991, ISBN 1-56072-034-4,
June.

3. German, R. M., Particle Packing Characteristics. Metal Powder Industries
Federation, Princeton, NJ, 1989.

4. Grays, W. A., The Packing of Solid Particles. Chapman & Hall, London,
1968.

5. Andreasen, A. H. Mn and Andersen, J., Relation between gain size and
interstitial space in products of unconsolided granules. Kolloid-Z., 1929,
50, 217–228.

6. Furnas, C. C., Grading aggragates. I. Mathematical relations for beds of
broken solids of maximum density. Ind. Eng. Chem., 1931, 23, 1052–1058.

7. Westman, A. E. R., The packing of particles: empirical equations for inter-
mediate diameter ratios. J. Am. Ceram. Soc., 1936, 19, 127–129.

8. Dinger, D. R. and Funk, J. E., Particle packing II, review of packing of
polydisperse particle system. Interceram, 1992, 41, 95–97.

9. Liu, S. and Ha, Z., Prediction of random packing limit for multimodal
particle mixtures. Powder Technol., 2002, 126, 283–296.

0. Zheng, J., Johnson, O. F. and Reed, J. S., Improved equation of the contin-
uous particle size distribution for dense packing. J. Am. Ceram. Soc., 1990,
73(5), 1392–1398.

1. Konakawa, Y. and Ishizaki, K., The particle size distribution for the highest
relative density in a compacted body. Powder Technol., 1990, 63, 241–246.
2. Silva, A. P., Segadaes, A. M. and Devezas, T. C., Optimization of the pack-
ing density of alumina powder distributions using statistical techniques.
Ceramica, 2004, 50.

3. Dodds, J. A., The relation between the structure of packings of particles and
their properties, Physics of finely divided matter. Proc. Phys., 1988, 5.



pean C

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

V. Moreschi et al. / Journal of the Euro

4. Suzuki, M., Sato, H., Hasegawa, M. and Hirota, M., Effect of size distribution
on tapping of fine powder. Powder Technol., 2001, 118, 53–57.

5. Zu, R. P. and Yu, A. B., Evaluation of the packing characteristics of mono-
sized non-spherical particles. Powder Technol., 1996, 88, 71–79.

6. Moreschi, V., PhD Thesis, University of Valenciennes and Hainaut Cam-
bresis, 2008, France.

7. Guerain, V., Prédiction et compréhension de la densification des poudres
commerciales d’alumine et de fer grâce à une approche par réseau de neu-
rones artificiels. Ph.D. Thesis. Science des Matériaux, Lausanne, EPFL,
2004.

8. Sutcu, M. and Akkurt, S., ANN model for prediction of powder packing. J.
Eur. Ceram. Soc., 2007, 27, 641–644.

9. Laosiritaworn, W., Khamman, O., Ananta, S., Yimnirun, R. and Laosir-
itaworn, Y., Artificial neural network modelling of ceramics powder
preparation: application to NiNb2O6. Ceram. Int., 2008, 34(May (4)),
809–812.

0. Ohdar, R. K. and Pasha, S., Prediction of the process parameters of metal
powder perform forging using artificial neural network (ANN). J. Mater.
Process. Technol., 2003, 132(1–3), 227–234.

1. Dihoru, L. V., Smith, L. N. and German, R. M., Experimental analysis and
neural network modelling of the rheological behaviour of powder injec-
tion moulding feedstocks formed with bimodal powder mixtures. Powder
Metall., 2000, 43, 31–36.

2. Karatas, C., Sözen, A., Arcaklioglu, E. and Erguney, S., Experimental and
theoretical investigations of mouldability for feedstocks used in powder
injection moulding. Model. Simul. Eng., 2007(2), Article #2.

3. Balasubramanian, M., Paglicawan, M. A., Zhang, Z.-. X., Lee, S. H., Xin,
Z.-X. and Kim, J. K., Prediction and optimization of mechanical properties
of polypropylene/waste tire powder blends using a hybrid artificial neural
network-genetic algorithm (GA-ANN). J. Thermoplast. Compos. Mater.,
2008, 21(1), 51–69.

4. Dihoru, L. V., Smith, L. N., Orban, R. and German, R. M., Experi-
mental analysis and neural network modelling of the stability of powder

injection molding feedstocks. Mater. Manuf. Process., 2000, 15(3),
419–438.

5. Lecoeuche, S., Lalot, S. and Desmet, B., Modelling a non-stationary sin-
gle tube heat exchanger using multiple coupled local neural networks. Int.
Commun. Heat Mass Transfer, 2005, 32(7), 913–922.

3

eramic Society 29 (2009) 3105–3111 3111

6. Kalogirou, S., Lalot, S., Florides, G. and Desmet, B., Development of a
neural based fault diagnostic system for solar thermal applications. Solar
Energy, 2008, 82, 164–172.

7. Lalot, S., Artificial neural networks in solar thermal energy systems. In Artifi-
cial Intelligence in Energy and Renewable Energy Systems, ed. S. Kalogirou.
Nova Science Publishers, Hauppauge, NY, 2006 [Chapter 3].

8. Keller, R. E., Kouzes, R. T. and Kangas, L. J., Neural network applications
in an environmental and molecular sciences laboratory. In World Congress
on Neural Networks, 1993.

9. Sato, A., Sha, Z. and Palosaari, S., Neural networks for chemical engineering
unit operations. Chem. Eng. Technol., 1999, 22(9), 732–739.

0. Fernandes, F. A. N. and Lona, L. M. F., Neural network applications in
polymerization processes. Braz. J. Chem. Eng., 2005, 22(3).

1. Pham, D. T. and Oh, S. J., Identification of plant inverse dynamics using
neural networks. Artif. Intell. Eng., 1999, 13(3), 309–320.

2. Sjöberg, J., Non linear system identification with neural networks. Ph.D.
Thesis, Department of Electrical Engineering, Linköping University, Swe-
den, 1996.

3. Norgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K., Neural Networks
for Modeling and Control of Dynamic Systems. Springer-Verlag, London,
2000.

4. Haykin, S., Neural Networks—A Comprehensive Foundation (2nd ed.).
Prentice Hall, Upper Saddle River, NJ, 1999.

5. Demuth, H., Beale, M. and Hagan, M., Neural Network Toolbox 6 User’s
Guide. The Mathworks Inc., Natick, MA, 2009.

6. Sobolev, K. and Amirjanov, A., The simulation of particulate packing
using a particle suspension model. Adv. Powder Technol., 2007, 18(3),
261–271.

7. Muthukumar, M., Mohan, D. and Radjendran, M., Optimization of mix pro-
portions of mineral aggregates using Box Behnken design of experiments.
Cement Concrete Compos., 2003, 25, 751–758.

8. Wong, H. H. C. and Kwan, A. K. H., Packing density: a key con-
cept for mix design of high performance concrete, available in 2009

at http://www.hkpc.org/hkiemat/mastec05 program notes/Prof.%20Albert
%20KWAN.pdf.

9. Silva, A. P., Segadaes, A. M. and Devezas, T. C., Aplicação de métodes
estatisticos na otimização da densidade de empacotameto de distribuições
de pos de alumina. Ceramica, 2004, 50, 345–354.

http://www.hkpc.org/hkiemat/mastec05_program_notes/Prof.%2520Albert%2520KWAN.pdf

	Modelling the tap density of inorganic powders using neural networks
	Introduction
	Methods and materials
	Characterization techniques
	The tap density
	The grain size distribution
	SEM observation

	Powder classification

	Artificial neural networks (ANN)
	Principles
	Application
	Results
	Mixing optimization

	Conclusions
	References


